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Abstract
The interface properties of interest in multilayers include interfacial charge
densities, dipole densities, band offsets, and screening lengths, among
others. Most such properties are inaccessible to direct measurements,
but are key to understanding the physics of the multilayers. They are
contained within first-principles electronic structure computations but are
buried within the vast amount of quantitative information those computations
generate. Thus far, they have been extracted from the numerical data by
heuristic nanosmoothing procedures which do not necessarily provide results
independent of the smoothing process. In the present paper we develop the
theory of nanosmoothing, establishing procedures for both unpolarized and
polarized systems which yield interfacial charge and dipole densities and band
offsets invariant to the details of the smoothing procedures when the criteria we
have established are met. We show also that dipolar charge densities, i.e. the
densities of charge transferred across the interface, and screening lengths are
not invariant. We illustrate our procedure with a toy model in which real,
transversely averaged charge densities are replaced by sums of Gaussians.

Contents

1. Introduction 2
2. Simulation of interfaces from first principles 5
3. Interface quantities of interest: the unpolarized case 6
4. The difficulty of defining a reference interface 7
5. Nanosmoothing 9

5.1. The procedure 9
5.2. The Poisson equation and potential shifts 10
5.3. Insensitivity of the dipole moment density and potential shift to the smoothing

function 11

0953-8984/07/213203+34$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/21/213203
http://stacks.iop.org/JPhysCM/19/213203


J. Phys.: Condens. Matter 19 (2007) 213203 Topical Review

5.4. The transferred charge density and the dipolar density 13
5.5. Loss of invariance of physical magnitudes of interest with nanosmoothing 14

6. Description of the toy model 17
7. Results: toy model, non-polar case 18
8. Polarized systems 24
9. Results: toy model, polarized 26
10. Summary and discussion 30
Acknowledgments 32
Appendix A. Transverse averaging of the Poisson equation 32
Appendix B. Nanosmoothing of the Poisson equation 33
Appendix C. Electrostatic potential shift and interface dipole density 33
References 34

1. Introduction

One of the central problems of physics from the mid-nineteenth century on has been how to
make the transition from a microscopic to a macroscopic theory of matter. This problem has two
aspects. The first is the task of deriving the equations governing the macroscopic behaviour of
matter from the underlying microscopic equations, exemplified by the derivation of Maxwell’s
macroscopic equations from the microscopic theory of charges and fields in vacuum. This
problem is elegantly solved by a coarse-graining procedure which takes an average over
‘physically infinitesimal’ regions. Such an elementary region is chosen to be small enough to let
the average of a quantity follow all the changes that are observable at the macroscopic level, but
large enough compared with characteristic atomic dimensions for it to contain so many particles
that the behaviour of an individual particle has a negligible effect on the average quantity. This
coarse-graining procedure smooths over the atomic-scale fluctuations in physical quantities,
leaving only the slow spatial variation of their macroscopic components. A beautifully clear
derivation of the macroscopic Maxwell’s equations, first derived by Lorentz in 1902 [1], can be
found in Rosenfeld’s Theory of Electrons, a now-forgotten classic [2]. In the coarse-graining
procedure there are three distance scales: λ1, the scale on which the macroscopic quantities
vary; λ2, the scale on which the smoothing is carried out; and λ3, the microscopic scale, that
is, the atomic scale. For the procedure to work, λ1 must be sufficiently larger than λ3 that the
pair of inequalities λ1 � λ2 � λ3 can both be satisfied. Indeed, this criterion makes clear the
distinction between macroscopic and microscopic.

The second aspect of the problem is the task of deriving macroscopic constitutive equations
from microscopic properties. An early example is the derivation of the Clausius–Mossotti
equation [3, 4], which provides the link between the microscopic polarizability (response of
the atoms or molecules to the local electric field) and the macroscopic dielectric constant.

The systems of interest in the present paper are those with interfaces between quite
different materials. A planar capacitor comprised of an insulating layer sandwiched between
metallic electrodes is a good example of such a system. Further examples are heterojunctions
between different semiconductors and Schottky barriers at semiconductor–metal interfaces.
In all such systems, there are multiple causes of charge transfer across or to the interfaces.
These can include charge transfer to establish spatial uniformity of the chemical potential
(the Fermi level), charge transfer in response to the local change in chemical composition
across the interface and to the interface-induced atomic relaxation of the structure, charge
accumulation to screen the interface charge density associated with the termination of bulk
polarization at the interface, and charge accumulation attendant to charging or shorting [5, 6]
of a capacitor. Interface dipole densities arise from such transfer of charges and are responsible
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for offsets of the average electrostatic potentials across the interfaces, a dominant factor in
determining Schottky barriers and valence and conduction band offsets in semiconductor
heterojunctions [7, 8]. In all such cases, the charge density of each material is perturbed,
and the perturbation is localized near the interfaces, usually within a few interatomic
distances.

The case of thin ferroelectric films between metallic electrodes provides a good illustrative
example of this general class of systems. Since the early 1970s a phenomenological model has
been developed [9–12] to explain the modification of the polar phases (substantial reduction
of the spontaneous polarization for small thicknesses, or even the complete suppression
of ferroelectricity below a certain critical thickness) and of their thermodynamic properties
(depression of the transition temperature with respect to that of the bulk material). The model,
mainly due to Batra and co-workers, relies on three basic assumptions: (i) the polarization
charge lies in a sheet right at the interface, (ii) the surface polarization charge density equals
the magnitude of the polarization inside the thin film, and (iii) the free compensation charge
spreads out at least over a finite distance λ within the electrode, decaying exponentially towards
its interior as in the Thomas–Fermi approximation. In this model, the screening length λ is
dependent only on intrinsic properties of the electrode, such as the density of free carriers
or the dielectric constant. All effects which might come from a particular choice of the
electrode/ferroelectric interface are neglected, such as the different chemical bondings formed
at the junction or the interpenetration of the electrode and dielectric/ferroelectric wavefunctions
that might screen the polarization charge in part within the insulator, reducing therefore the
magnitude of the interface dipole density. Atomic level charge fluctuations are neglected as
well, implying a smoothing on a microscopic scale distinct from the smoothing on the coarse-
graining scale in the derivation of macroscopic equations and properties.

The need to go beyond such simple models is well illustrated by this interpenetration of
wavefunctions across the interface. As pointed out first by Heine [13], and later by Tejedor
et al [14] and Tersoff [15], the bulk Bloch states of a metal with energies below the Fermi level
of the metal and within the semiconductor band gap and its valence band decay exponentially
inside the semiconductor (and, indeed, might have a significant amplitude for a few layers
from the interface), creating a continuum of gap states (the so-called metal-induced gap states
(MIGS)). Consequently, achieving deep understanding of interface properties with quantitative
predictive power and free of adjustable parameters requires first principles simulations. In
recent years it has become possible to carry out first-principles calculations for systems of the
complexity of those under discussion here. These simulations provide a wealth of information
at the atomic level about the structural and electronic properties of materials and their responses
to various external perturbations [16]. Some quantities, such as the microscopic charge density
distribution ρ(�r) or the corresponding electrostatic potentials, are routinely available from first-
principles calculations.

The question becomes how to extract from the immense detail provided by the first-
principles computations reliable values of the physical quantities of interest—interface charge
and dipole densities, screening lengths, etc—which enter the pseudo-macroscopic models
currently used. Two major difficulties arise. First, coarse-graining is inapplicable because
the relevant distance scale for interface properties is the atomic scale, i.e. λ2 ∼ λ3. Second,
the charge-density changes associated with maintaining the constancy of the Fermi levels can
be orders of magnitude smaller than the unperturbed bulk charge densities, themselves very
rapidly varying functions of position, reflecting the underlying atomic structure. The relative
magnitudes of these changes in the microscopic charge densities are illustrated in figure 1.
Moreover, the polarization-induced charge densities and their screening charge densities can
be smaller by additional orders of magnitude than those arising from imposing Fermi-level
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Figure 1. Charge density laterally averaged parallel to (001) planes (see equation (1) below) of
bulk BaTiO3 (a), SrRuO3 (b), and (c) an unpolarized planar capacitor comprised of four layers of
BaTiO3 between metallic electrodes made of five layers of SrRuO3, all from first principles. The
charge-density profile of the capacitor looks like a juxtaposition of the bulk charge densities of the
two materials, highlighting the fact that the charge transferred from one material to the other to
establish the constancy of the chemical potential is overwhelmed by much larger variations of the
total microscopic charge density. Details of the first-principles calculations can be found in [6]
and [5]. The unit of the charge density is electrons/bohr3.

constancy. Therefore, all the interface-related dipole densities are overwhelmed by much larger
variations of the total microscopic charge density.

It is still possible to carry out smoothing of the computed charge density at the nanoscale
where the conditions for coarse-graining are not met, providing sufficient care is taken. A
heuristic smoothing procedure has been introduced [8, 17, 18] to extract the quantities of
interest from the results of first-principles charge-density computations as described in more
detail below. However, that procedure has not yet been systematically analysed to establish the
conditions under which it accurately extracts the quantities of interest: surface charge densities,
surface dipole densities, etc. In the present paper, we introduce such an analysis. In addition, in
order to focus only on the perturbations introduced by the nanosmoothing procedure, avoiding
other sources of numerical noise coming from the first-principles simulations, we illustrate the
analysis with a toy model whose accuracy can be arbitrarily improved. The application of this
theory to first-principles computations on realistic ferroelectric capacitors is the subject of a
forthcoming paper. Despite this focus on the ferroelectric capacitor, our analysis is of general
utility for the extraction of interface properties for all multilayer systems.

The rest of the paper is organized as follows. We set the grounds of our discussion of
simulations of interfaces from first principles and define the microscopic behaviour of the
different quantities that are the targets of our study in section 2. In section 3 we define
the interface quantities of interest for an unpolarized interface. In section 4 we describe the
difficulties encountered in defining precisely the location of a reference interface. We develop
the theory of nanosmoothing of unpolarized systems in section 5 with particular attention to
questions of the sensitivity of quantities of interest to the smoothing procedure. We describe in
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Figure 2. Schematic view of a supercell used in first-principles simulations of interfaces. The z
axis is taken as normal to the interface, whereas the plane parallel to the discontinuity is taken as
the (x, y) plane. n1 and n2 multiatomic layers of two materials, whose bulk lattice constants in
the out-of-plane direction are respectively a1 and a2, are stacked to build a basic unit cell (hatched
rectangle) that is periodically repeated in space. asc is the length of the supercell in the out-of-plane
direction, with asc = n1a1 + n2a2. In the figure, n1 = 2, and n2 = 3.

section 6 a toy model used to illustrate all of the essential elements of the smoothing theory. In
section 7, we present the results of the toy model computations for the unpolarized case. We
generalize the nanosmoothing theory of section 5 for polarized systems in section 8 and present
the corresponding toy model results in section 9. Finally, in section 10, we summarize our
results, emphasizing the specific criteria smoothing functions must satisfy to yield interfacial
properties that are insensitive to their parameters and specifying which of our results are new.

2. Simulation of interfaces from first principles

First-principles calculations of interfaces between two materials, where there is no
periodicity in at least one direction, are almost universally done by means of the supercell
approximation [19]. Within this approach a basic unit cell that contains a suitable number of
multiatom layers of the two materials is periodically repeated over all space (figure 2). For the
interfaces within a nanostructured multilayer to be well defined, with properties distinct from
those of the bulk-like regions between them, the widths of the layers of each material introduced
in the construction of the basic unit cell must be large enough to avoid the interaction between
adjacent interfaces through the bulk materials, so that the calculation accurately represents an
isolated interface.

Throughout this work, we shall assume that the interface is oriented along the z axis, and
each material is periodic in the plane parallel to the interface, referred to as the (x, y) plane.

Precisely the same methodology is used to treat nanostructured multilayer materials, and
in this paper we do not distinguish between the cases, specializing to multilayers in which the
individual material thicknesses are large enough for the interfaces to be noninteracting.

The microscopic charge densities ρ(�r) (see figure 1(c)) and electrostatic potentials V (�r)

provided by the first-principles computations for the previously described supercells are
continuous functions periodically repeated in space with the periodicity of the supercell (asc

in figure 2). A few interatomic distances away from the interfaces, the microscopic quantities
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recover their bulk features. In other words, if the layer widths are large enough, it is possible to
identify ‘bulk-like’ regions in the middle of each of the layers that constitute the superlattice,
with large variations of the microscopic quantities with the same periodicity as in the bulk,
reflecting the underlying atomic structure.

Many of the interface-related quantities that we shall define below depend only on what
happens in the direction perpendicular to the interface, where the actual discontinuities of the
physical structure occur. Since we assume in-plane periodicity, we can trivially eliminate the
in-plane dependence by taking a planar average of the corresponding microscopic quantity, e.g.,
for the electron density,

ρ(z) = 1

S

∫ ∫
S
ρ (�r) dx dy, (1)

where S is the area of the interface unit cell.
As is proven in appendix A, this transverse averaging has no effect on the Poisson equation,

which reads after averaging

∇2V (�r) = ∇2V (z) = d2V (z)

dz2
= −4πρ(z). (2)

3. Interface quantities of interest: the unpolarized case

One of the most important physical properties of heterojunction devices is the band offset or
Schottky barrier at an interface, that is, the relative positions of the energy levels on both sides
of the interface. In the case of semiconductor heterojunctions, the valence-band offset (VBO)
(conduction-band offset (CBO)) is defined as the difference between the positions of the tops
of the valence bands (the bottoms of the conduction bands) of the two materials. In the case
of metal–semiconductor contacts, we can define the p-type (n-type) Schottky barrier as the
difference between the Fermi level of the metal and the top of the valence band (bottom of the
conduction band) of the semiconductor. These differences in the band positions determine the
effective barrier for electron or hole transport across the junction.

The computation of such effects from first principles cannot be achieved by a direct
comparison of the corresponding single-particle energies (tops of the valence bands, bottoms
of the conduction bands and/or Fermi level of the metal) in the two compounds as obtained
from two independent bulk band-structure calculations. The reason is the lack of an intrinsic
energy origin to which to refer all the energies: in a first-principles simulation, the Hamiltonian
eigenvalues are referred to an average of the electrostatic potential that is ill defined for an
infinite system [20] where, due to the long-range nature of the Coulomb interaction, it is defined
only to within an arbitrary constant. Consequently, together with the eigenvalue difference, we
must consider both the shift of this average between the two materials and the redefinition of
the averaging process so that it is appropriate to the multilayer system under consideration. As
was mentioned in section 1, the coarse-graining procedure used historically fails when applied
to the results of first-principles computations. We designate the averaged potential as 〈Vu〉 and
its shift as �〈Vu〉. The brackets 〈〉 indicate that the averaging process is not yet defined. We
shall label all quantities of physical interest of the unpolarized system by a subscript u. This
potential shift depends on the dipole induced by the electronic charge transferred from one
side of the interface to the other after interfacial hybridization. As the charge transfer depends
not only on the materials that constitute the interface, but also on intrinsic interface effects
such as the chemical composition (termination of each material at the interface), on particular
orientation and on other structural details, the shift can only be obtained from a self-consistent
calculation on a supercell including both materials. This ensures that the averaged electrostatic
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potentials of both materials in the ‘bulk-like’ regions defined in the previous section, where
all the physical quantities recover the bulk features, are expressed with respect to the same
reference, and allows a direct extraction of the shift.

This shift of the averaged electrostatic potential should be directly related to an averaged
interface dipole moment density 〈pu〉,

�〈Vu〉 = 4π〈pu〉. (3)

We prove in appendix C that equation (3) holds for the specific definition of the average
procedure 〈〉 introduced in section 5.1 below and discussed in this context in section 5.2.

From a fundamental point of view [21], the charge Qu , and electric dipole moment at the
interface pu are defined respectively as the zero and the first moment of the total microscopic
charge density,

Qu =
∫ z2

z1

dz ρu(z), (4a)

pu =
∫ z2

z1

dz zρu (z) . (4b)

For the previous equations to be meaningful and truly represent an interface quantity, the
thicknesses of the adjacent layers must be wide enough so that they contain regions within
which the charge density is essentially unaffected by the presence of interfaces within which z1

and z2 could be located.
However, from a practical point of view, such a definition poses serious questions. Indeed,

both Qu and pu are ill defined due to the large and rapid oscillations of the microscopic charge
density (see figure 1(c)). In fact, different choices of the integration limits z1 and z2 yield
widely different values of the charge and interface dipole moment. Only in the extreme case
of a Clausius–Mossotti model, in which the total charge is unambiguously decomposed into
an assembly of localized and neutral charge distributions, so that a unit cell can be chosen
with no charge at the surface, would the dipole moment of a periodic charge distribution be
well defined as the integral of the first moment of the charge density. However, any Clausius–
Mossotti approach does not correspond to reality, particularly in materials where delocalized
covalent charge is present [22]. This ambiguity in the definition of pu with respect to the
boundaries of the region within which the dipole moment is computed is closely connected to
the problem of defining the polarization of a periodic system from the charge density [23].

4. The difficulty of defining a reference interface

In order to get rid of bulk effects and extract interface-related features, some authors [24–27]
have defined an ideal interface by stacking alternate slabs, each of them made from slicing
the planar average of the bulk charge density of the corresponding material perpendicular to
a particular direction. Let us define ρ

(1)

0 (z) and ρ
(2)

0 (z) as the planar-averaged (equation (1))
bulk charge densities of the left and right material respectively, unaffected by the presence
of the interface. They are locally periodic in z, and, assuming that both bulk materials are
unpolarized, the net charge and the dipole moment vanish within each bulk unit cell,∫

a(s)
bulk

dz ρ
(s)
0 (z) = 0, (5a)

∫
a(s)

bulk

dz zρ(s)
0 (z) = 0, (5b)
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where a(s)
bulk is the lattice constant of the bulk unit cell of each material in the z direction, and s

refers to the side of the interface considered, 1 or 2. The bulk unit cell boundaries are chosen
so as to preserve inversion symmetry.

Replicating the bulk charge densities up to the as yet unspecified interface from each side,
we could define the reference charge density ρ0 for all z as

ρ0(z) =

⎧⎪⎪⎨
⎪⎪⎩

ρ
(1)
0 (z), z < zint,

1
2

[
ρ

(1)

0 (zint) + ρ
(2)

0 (zint)

]
, z = zint,

ρ
(2)

0 (z), z > zint,

(6)

where zint is the coordinate assigned to the position of the interface. ρ0(z) is discontinuous at
the interfacial plane zint by its very definition.

We now define the interface-induced deformation of the charge density �ρu(z) as

�ρu(z) = ρu(z) − ρ0(z). (7)

If the thicknesses of the two layers are wide enough, �ρu(z) becomes negligibly small over
the ranges R1 in the left material and R2 in the right material (see figure 6(b)). The interface
region can thus be identified as comprised of those ranges where �ρu(z) differs significantly
from zero, in other words where the microscopic charge density differs from the relevant bulk
values. The interface charge and dipole density associated with �ρu(z) are defined as

�Qu =
∫ z2

z1

dz �ρu(z), (8a)

�pu =
∫ z2

z1

dz z�ρu(z). (8b)

The advantage of this approach is that both �Qu and �pu are well-defined quantities with
respect to the location of the integration limits z1 and z2 in equations (8a) and (8b), provided
that z1 lies in R1 and z2 lies in R2.

However, this approach has pitfalls. In particular (i) the position of the interface, zint

in equation (6), is not yet specified. Some recipes have been given for how to cut the bulk
slabs, but they have limited applicability. One case is for common anion heterostructures
with non-relaxed interfaces along high-symmetry planes, such as the (001) [24], (110) [25],
or (111) [26] interfaces of GaAs/AlAs superlattices. As soon as an interface-induced rippling
of the atomic layers is introduced, for instance after an atomic relaxation of the interface
geometry, the problem of defining the position of the interface worsens. (ii) Therefore, the
interface charge and dipole densities are not unique, since they depend critically on where the
mathematical surface representing the interface is chosen, and no objective criterion for locating
it has been established. In particular, �Qu and �pu (equations (8a) and (8b)) equal Qu and
pu (equations (4a) and (4b)) if and only if zint − z1 contains an integer number of unit cells
of the left material and z2 − zint contains an integer number of unit cells of the right material.
The location of the interface determines where on one side, the bulk charge density of the left
material is subtracted, and on the other side that of the right material subtracted. A different
choice of the mathematical interface can produce very different charge and dipole densities.
In addition, comparison between different interface orientations makes little sense with this
definition [7]. (iii) Since the interface dipole moment is dependent on the reference charge
density, the corresponding potential drop at the interface (�dipole in the notation of [24–27])
must be too. However, it is important to note that the potential drop generated by �ρu(z) is
only part of the total potential shift. The total charge density of the interface is given by

ρu(z) = ρ0(z) + �ρu(z), (9)
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thus the potential shift associated with ρ0(z) must be included as well. Although the existence
of a potential shift generated by ρ0(z) is general, we shall explain its origin only in the particular
case where zint − z1 contains an integer number of unit cells of the left material, and z2 − zint

contains an integer number of unit cells of the right material. In this particular situation both
slabs used to construct the reference charge density in equation (6) have neither a charge nor a
dipole moment. Under these circumstances, the potential shift is the difference in the locally
averaged potentials produced by the ρ

(s)
0 of each material in the regions R1 and R2 respectively.

For this shift to be an interface property, the layer width of each material must be large enough
that the local average 〈V (s)

slab〉 has approached the unperturbed value within the centre of a slab.
The planar-averaged potential within any point of the slab will be given by [20]

V (s)
0 (z) = 2π

∫
dz′ |z − z′|ρ(s)

0 (z ′), (10)

so the local average can be computed as

〈V (s)
slab〉 = 2π

a(s)
bulk

∫
central cell

dz
∫

dz′ |z − z′|ρ(s)
0 (z ′). (11)

Since 〈V (s)
slab〉 depends on the charge density distribution, it differs for the left and right slabs

used in the construction of the reference charge density and produces an additional shift.
Therefore, the total potential drop at the interface is the sum of the potential drop generated
by �ρu(z), �dipole, and the difference of the average potential of the two reference slabs �ref.
Only the sum �ref + �dipole is independent of the reference charge density chosen and is a
physically measurable property of the interface. Since each term in the sum is sensitive to the
arbitrary location of the interface, each must be computed accurately enough for the sensitivity
to disappear from the sum. As the charge density shifts of interest are so small, this is an
unnecessary burden, removed by the use of a proper nanosmoothing [17] procedure as shown
in section 5.

5. Nanosmoothing

5.1. The procedure

A procedure to eliminate charge fluctuations in the regions of the material which do not
contribute to the interfacial hybridization, thereby localizing the physically relevant charge
densities to the interface, consists of filtering out the periodic oscillations of microscopic
quantities, which typically follow the underlying atomic structure, preserving only those
features that emerge in the vicinity of the interface.

To obtain this smoothed charge density, we have followed the recipe given by
Baldereschi et al in [17] and generalized by Colombo and co-workers for lattice-mismatched
heterostructures in [18]. Starting from the planar-averaged charge density ρu(z), we construct
the smoothed density ρu(z) by convoluting it with a smoothing function f (z),

ρu(z) =
∫

dz′ f (z − z ′)ρu(z
′) (12)

which has the following properties [28]:

f (z) > 0, |z| < L, (13a)

f (z) = 0, |z| � L, (13b)

f (−z) = f (z), (13c)∫
dz f (z) = 1, (13d)

9
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so that

ρu(z) =
∫ z+L

z−L
dz′ f (z − z ′)ρu(z

′). (14)

In addition, f (z) should be monotonic in |z| and sufficiently smooth itself. L should be chosen
on the scale of the unit cell length or larger, but smaller than the widths of the left and right
layers. A sharper criterion for L is introduced below. We define this as the averaging procedure
〈〉 left unspecified above in section 3.

The particular smoothing function we have used, following references [8, 17] and [18], is
the convolution of two square-wave filter functions:

f (z − z′) =
∫

dz′′ ωl1 (z − z′′)ωl2 (z
′′ − z′), (15)

where

ωl(z) = 1

l
�

(
l

2
− |z|

)
, (16a)

�(z) =
{

1, z > 0

0, z � 0.
(16b)

Giustino and co-workers [29, 30] propose convolution with a Gaussian kernel that can be an
approximation to the asymptotic limit of a convolution of a large number of square-wave filter
functions. This method is best suited for superlattices where crystal deviates from perfect
periodicity far away from the interface so that it is not possible to define regions where the
interface-induced charge density vanishes, or in disordered three-dimensional systems with
short-range order. Even more general functions can be used, providing the criteria established
above are met.

The explicit dependence of f (z), defined in equation (15), on z is

f (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, |z| > l1+l2
2 ,

1

l1l2

[
l1 + l2

2
− |z|

]
,

|l1−l2 |
2 < |z| � l1+l2

2 ,

1

l>
, 0 < |z| <

|l1−l2 |
2 ,

(17)

as shown in figure 3. l> is the greater of l1 and l2.
After nanosmoothing the planar-averaged charge density ρu(z), the resulting charge

density ρu(z) is a continuous function that joins smoothly at the interface. Even though we
have not subtracted any reference charge, the smoothed charge density becomes negligibly
small over ranges R′

1 in the left material and R′
2 in the right material (see figure 6(c)), and

the interface region can be unambiguously defined as the region where the smoothed charge
significantly differs from zero. Note that Rs and R′

s will differ in general, as shown in figure 8
and discussed further in sections 5.3 and 7.

5.2. The Poisson equation and potential shifts

Providing the filter function f (z) satisfies the following additional conditions:

d2 f (z)

dz2
exists, (18a)

d f (z)

dz

∣∣∣∣
z=−L

= d f (z)

dz

∣∣∣∣
z=+L

= 0, (18b)

f (z)|z=−L = f (z)|z=+L = 0, (18c)

10
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Figure 3. Filter functions used for the smoothing of the charge density and potential in the present
work. Two square wavefunctions of lengths l1 and l2 , as defined in equations (16a) and (16b),
are represented in panel (a). The corresponding convolution, given by equation (15), is shown in
panel (b). For numerical calculations, the square wavefunctions are expanded in Fourier series. The
small oscillations in the vicinity of each discontinuity are due to the Gibbs phenomenon [31].

the Poisson equation remains invariant after the nanosmoothing (see appendix B) and
transforms into

∇2V (z) = d2V (z)

dz2
= −4πρ(z). (19)

The nanosmoothing function f (z) defined in equations (16a) and (16b) violates condition
equation (18a) at its end points z = ± l

2 , where f (z) is discontinuous so that condition (18c)
cannot be unambiguously applied. Similarly, the f (z) of equation (17) violates condition (18a)
at the four points z = ± l1±l2

2 , and d f/dz is discontinuous at the points z = ± l1±l2
2 so that

condition (18b) cannot be unambiguously applied. Nevertheless, one can think of the f (z) as a
distribution, a family of smooth functions all of which meet conditions (18a)–(18c) and which
approach the f (z) of equation (17) as their limit. In practice, because the smoothing operation
is a convolution, equation (12), one carries out smoothing via fast Fourier transformations. The
family of the finite Fourier series involved is thus a distribution which converges to f (z) in the
limit, meeting conditions (18a)–(18c) along the way.

Equation (19) holds in general for both the unpolarized and the polarized cases, so
subscripts have been omitted. Otherwise the subscript u is used because we are presently
treating the unpolarized case.

We prove in appendix C that the full electrostatic potential shift �V u is given by the
nanosmoothed dipole density pu ,

�V u = 4π pu, (20)

where

pu =
∫ z2

z1

dz zρu(z). (21)

5.3. Insensitivity of the dipole moment density and potential shift to the smoothing function

The microscopic charge density ρu must return to the bulk microscopic charge densities ρ
(1)
0

and ρ
(2)
0 in the regions R1 and R2 for it to be possible to ascribe physical properties specifically

11
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to individual interfaces. However rapidly it approaches those values, the approach must be
complete within R1 and R2, as summarized by equation (22),

ρu(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ
(1)

0 (z), z ∈ R1,

g(z) 
= ρ
(1)

0 (z), z 
∈ R1,

g(z) 
= ρ
(2)
0 (z), z 
∈ R2,

ρ
(2)
0 (z), z ∈ R2

(22)

with g(z) such that ρu(z) and all its derivatives are continuous (the cusps at the nuclei are
washed out by lateral averaging). Consequently, locally within R1 and R2, the microscopic
charge density ρu can be represented by the Fourier transforms of ρ

(1)

0 and ρ
(2)

0 ,

ρ
(s)
0 (z) =

∑
n

A(s)
n eiκ(s)

n z;

κ(s)
n = 2πn

a(s)
bulk

; n ∈ Z; z ∈ Rs; s = 1, 2. (23)

In equation (23), A(s)
0 vanishes because of charge neutrality.

The smoothing function f (z − z ′), equation (15), is a convolution of two square
wavefunctions ωls (z − z′), equations (16a) and (16b), s = 1, 2. The order of the ωls within the
convolution is immaterial, so the ωls can be applied to the nanosmoothing of ρ

(s)
0 first, in the

two-step nanosmoothing process implied by use of f (z−z ′) in equation (12). As long as ls is an
integer multiple of the lattice constant of material s, all contributions to ρ

(s)
0 from A(s)

n , n 
= 0,
are smoothed to zero, leaving only A(s)

0 , which itself vanishes. However, the regions R′
s within

which ρu vanishes lie within Rs because smoothing ρu within Rs brings into ρu values of ρu

for z outside Rs . The limits zs for the determination of p in equation (21) must lie within R′
s ,

and L must be significantly smaller than the width of Rs .
Similarly, the electrostatic potential V s(z) can be expressed within Rs as a comparable

Fourier series,

V s(z) =
∑

n

B(s)
n eiκ(s)

n z, (24)

with the B(s)
n fixed by the Poisson equation, equation (2),

B(s)
n = 4π A(s)

n[
κ

(s)
n

]2
, n 
= 0, (25)

except for B(s)
0 , which is influenced by the charge density outside of R′

s . Upon nanosmoothing,

all contributions to V u(z) for z within R′
s vanish except that for n = 0,

V s(z) = B(s)
0 , (26)

which is invariant to the smoothing process.

The potential shift �V u , defined in equation (C.2) as

�V u = V u (z2) − V u (z1) , (27)

is thus invariant to the smoothing procedure,

�V u = B(2)
0 − B(1)

0 . (28)

Moreover, according to equation (20), the nanosmoothed dipole moment density pu is invariant
as well,

pu = 1

4π
�V u = 1

4π

[
B(2)

0 − B(1)
0

]
. (29)

12
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5.4. The transferred charge density and the dipolar density

It is of considerable physical interest to establish the value of the charge transferred across the
interface, a difficult task. A criterion for establishing the position of the interface is needed,
the difficulty of which is discussed in section 4. The rapid, large oscillations of ρu(z) and the
relative smallness of the pertinent component of ρu(z) make using it impractical. On the other
hand, if one uses a criterion based on ρu(z), zint can be sensitive to the smoothing function.
Nevertheless, we shall attack the problem using ρu(z) and attempt to overcome the resulting
sensitivity to the smoothing function of the position of zint and the amount of charge transferred.

We start by defining two cumulative charge densities

Q−(z) =
∫ z

z1

dz′ ρu(z
′), (30a)

Q+(z) =
∫ z2

z
dz′ ρu(z

′). (30b)

For the unpolarized case now under consideration, Qu = 0. Thus, as

Qu = Q−(z) + Q+(z), z ∈ (z1, z2), (31)

Q−(z) = −Q+(z) (32)

holds for ∀z ∈ (z1, z2), and it is sufficient to consider either one or the other. Define q as the
magnitude of the charge transferred per unit area of the interface, the transferred charge density.
We estimate q as

q = sup
z

∣∣∣Q±(z)
∣∣∣ , (33)

and estimate zint as

zint = arg sup
z

∣∣∣Q±(z)
∣∣∣ . (34)

Now both q and zint are sensitive to the choices of l1 and l2 in the smoothing function f .
As l1 and l2 increase, ωl1 can reach across the interface from material 1 to material 2 bringing
contributions from ρ(z ′), z′ within material 2, to ρ(z), z within material 1, and vice versa, thus
returning part of the transferred charge back to its origin and reducing the value of q . Moreover,

since ρ(z) contains components which oscillate strongly with z, |Q(z)| could develop multiple
suprema or maxima as l1 and l2 increase in multiples of the lattice constants of materials 1 and
2, respectively. This would vitiate the utility of the definitions (33) and (34) of the transferred
charge q and the interface location zint, respectively, should it happen. We have found that it
does happen in the toy model described in section 6 and studied in section 7, cf figure 8 below,
in the case where the interatomic distance remains unchanged across the entire superlattice.
Accordingly, as a precaution, the smallest acceptable values of l1 and l2 should be used for
f (z), a single lattice constant of each material, an important additional condition on l1 and l2.

If the transferred charge density were concentrated equally on two surfaces at either side
of the interface, separated by a distance λ, a dipole moment density of magnitude qλ would be
created. Setting qλ equal to the actual dipolar density pu allows us to define λu as the dipolar
length

λu = pu

qu
, (35)

where we have restored the subscript u to q as we are dealing with the unpolarized case.

13
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Figure 4. (a) The range of integration in the (z, z ′) plane according to equation (37). (b) The range
of integration according to equation (39). The direction of the shading lines, horizontal in (a) and
vertical in (b), indicates the variable of which the first integral occurs, over z ′ in equation (37), and
z in equation (39) respectively.

5.5. Loss of invariance of physical magnitudes of interest with nanosmoothing

Now we can ask whether the physical magnitudes of interest, such as the interfacial
charge (equation (4a)) or dipole moment densities (equation (4b)), remain unchanged if the
microscopic charge density is replaced with the nanosmoothed charge density. In other words,

if we define the interfacial charge Qu and dipolar densities pu computed from ρu(z) as

Qu =
∫ z2

z1

dz ρu(z), (36a)

pu =
∫ z2

z1

dz zρu(z), (36b)

then the question is whether Qu = Qu and pu = pu for given integration limits z1 and z2.
Inserting equation (14) into equation (36a),

Qu =
∫ z2

z1

dz ρu(z) =
∫ z2

z1

dz
∫ z+L

z−L
dz′ f (z − z ′)ρu(z

′). (37)

The region of integration in equation (37) within the (z, z ′) plane is shaded in figure 4(a). Then,
the integral of equation (37) can be decomposed into the integral on the central square plus the
integrals on the cross-hatched triangles

Qu =
∫ z2

z1

dz
∫ z2

z1

dz′ f (z − z′)ρu(z
′)

+
∫ z2

z2−L
dz

∫ z+L

z2

dz′ f (z − z ′)ρu(z
′)

+
∫ z1+L

z1

dz
∫ z1

z−L
dz′ f (z − z ′)ρu(z

′). (38)
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On the other hand, Q is defined as

Q =
∫ z2

z1

dz′ ρu(z
′) =

∫ z2

z1

dz′ ρu(z
′)

∫ z′+L

z′−L
dz f (z − z ′), (39)

where the region of integration in the (z, z ′) plane is now shaded in figure 4(b). Decomposing

the domain of integration as for Qu above gives

Qu =
∫ z2

z1

dz
∫ z2

z1

dz′ f (z − z′)ρu(z
′)

+
∫ z2+L

z2

dz
∫ z2

z−L
dz′ f (z − z ′)ρu(z

′)

+
∫ z1

z1−L
dz

∫ z+L

z1

dz′ f (z − z ′)ρu(z
′). (40)

Therefore, the equality Qu = Qu is verified if and only if the integrals over the shaded
regions on either side of the line z = z ′ are the same; that is, if the following pair of equations
hold:

∫ z2

z2−L
dz

∫ z+L

z2

dz′ f (z − z ′)ρu(z
′) =

∫ z2+L

z2

dz
∫ z2

z−L
dz′ f (z − z′)ρu(z

′), (41a)

∫ z1+L

z1

dz
∫ z1

z−L
dz′ f (z − z′)ρu(z

′) =
∫ z1

z1−L
dz

∫ z+L

z1

dz′ f (z − z′)ρu(z
′). (41b)

If in equation (41a) we apply the following change of variables z = z2 − u and z ′ = z2 + v in
the left-hand side and z = z2 + u and z ′ = z2 − v in the right-hand side, then equation (41a)
transforms into

∫ L

0
du

∫ L−u

0
dv f (−u − v) ρu(z2 + v) =

∫ L

0
du

∫ L−u

0
dv f (u + v) ρu(z2 − v). (42)

Due to the parity conditions of the filter function, we know that f (−u − v) = f (u + v). But,
ρu(z2 +v) = ρu(z2 −v) if and only if ρ is even about z2. Completely analogous reasoning can

be applied to equation (41b) and is omitted here. Thus, for Qu to equal Qu , it must be possible
to find a z1 and a z2 about which ρ(z) is symmetric for |z − z1,2| � L.

We now show for the unpolarized case that this symmetry condition can be satisfied. For
a multilattice consisting of alternating layers of two different materials s, s = 1 or 2, there
are two distinct interfaces within the supercell bounded by z1 and z1 + asc, interface 1, 2 and

interface 2, 1. We define total charge Qsc and Qsc which are the sums of the charges associated
with each individual interface,

Qsc = Q12 + Q21 =
∫ z1+asc

z1

dz′ ρu(z
′), (43a)

Qsc = Q12 + Q21 =
∫ z1+asc

z1

dz ρu(z). (43b)
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Proceeding in analogy with equations (38) and (40), we obtain

Qsc =
∫ z1+asc

z1

dz
∫ z1+asc

z1

dz′ f (z − z ′)ρu(z
′)

+
∫ z1+asc

z1+asc−L
dz

∫ z+L

z1+asc

dz′ f (z − z ′)ρu(z
′)

+
∫ z1+L

z1

dz
∫ z1

z−L
dz′ f (z − z ′)ρu(z

′), (44)

Qsc =
∫ z1+asc

z1

dz
∫ z1+asc

z1

dz′ f (z − z ′)ρu(z
′)

+
∫ z1+asc+L

z1+asc

dz
∫ z1+asc

z−L
dz′ f (z − z ′)ρu(z

′)

+
∫ z1

z1−L
dz

∫ z+L

z1

dz′ f (z − z ′)ρu(z
′). (45)

The fact that ρu(z) is periodic in z with period asc allows as to rewrite equations (44)

and (45) so as to establish the equality of Qsc and Qsc,

Qsc =
∫ z1+asc

z1

dz
∫ z1+asc

z1

dz′ f (z − z ′)ρu(z
′)

+
∫ z1

z1−L
dz

∫ z+L

z1

dz′ f (z − z ′)ρu(z
′)

+
∫ z1+L

z1

dz
∫ z1

z−L
dz′ f (z − z ′)ρu(z

′) = Qsc. (46)

Since the supercell is electrically neutral, so must the nanosmoothed supercell be:

Qsc = 0 = Qsc. (47)

Consequently, from equation (43b) it follows that

Q12 = −Q21, (48)

implying that there would be a smooth electrostatic field within each layer if Q12 is nonzero.
The existence of such a field would polarize the system in contradiction to the initial condition
that the system is unpolarized. We conclude that

Q12 = Q21 = 0. (49)

Thus, for the interface charge to be invariant to nanosmoothing, that is, for Q12 = Q12 to
hold, z1 and z2 must be positioned in R1 and R2 so that Q12 vanishes in the unpolarized case.
To do this, one could make an arbitrary choice of z1 in R1, say, and then integrate ρu(z) from
z1 up to some z2 in R2 at which the integral vanishes. There is no need to do this, as it is the
nanosmoothing quantities themselves which are of interest.

Repeating the reasoning for the dipole moment density, we arrive at the conclusion that for
pu = pu, the following condition must be satisfied:
∫ z2

z2−L
dz z

∫ z+L

z2

dz′ f (z − z ′)ρu(z
′) =

∫ z2+L

z2

dz
∫ z2

z−L
dz′ z′ f (z − z′)ρu(z

′). (50)
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Applying the same change of variables as before, that is z = z2 − u and z ′ = z2 + v in the left-
hand side and z = z2 + u and z ′ = z2 − v in the right-hand side, then equation (50) transforms
into

∫ L

0
du (z2 − u)

∫ L−u

0
dv f (−u − v) ρu(z2 + v)

=
∫ L

0
du

∫ L−u

0
dv f (u + v) ρu(z2 − v) (z2 − v). (51)

Even in the case of a function ρu symmetric around z1 and z2, the previous condition does not
hold in general, and the difference between pu and pu amounts to

∫ L

0
du

∫ L−u

0
dv (u − v) f (u + v) ρu(z2 + v), (52)

plus a similar term that comes from the difference in the lower triangles in figures 4(a) and (b).
This has to be evaluated for each particular case.

In conclusion, the interface dipole moment density is not invariant to nanosmoothing and
the interface charge density can be made so only by exquisite case in the choice of z1 and z2.
This is of no concern, as it is the nanosmoothed quantities which are of physical interest.

6. Description of the toy model

As highlighted in the introduction, the components of the density which give rise to the
interface-related dipole densities are nearly obscured by the much larger variations of the
total microscopic charge density. This atomic-scale charge density, routinely provided by any
density-functional-based first-principles code, is affected by numerical noise and convergence
problems inherent in some of the standard approximations in the practical implementations
of density functional theory (DFT). Therefore, the accuracy of the computations required for
extracting the actual charge transferred from one side of the interface to the other must be
high enough so that the numerical noise of the calculations is orders of magnitude smaller than
the relevant interface-related charge densities. In this paper, in order to illustrate all of the
essential elements of the theory of smoothing while avoiding these practical problems, we shall
define a toy interface model that resembles closely a realistic multilayer material but whose
computational accuracy can be systematically improved.

The requirements that such a toy model should meet are: (i) its electron density must be a
continuous function; (ii) far away from the interfaces, where the interface-induced perturbation
of the charge density becomes negligible, the toy electron density must tend to two distinct
periodic functions on the left and on the right of each interface, mimicking the differing
behaviour at the bulk level of the materials that constitute the multilayer system containing
the interfaces; and (iii) the interlayer spacing at the interfaces should be distorted with respect
to those at bulk so as to simulate better the interface induced relaxations that happen in real
interfaces.

In the toy model we propose here, we represent only the laterally averaged density, a one-
dimensional function. As before, the direction perpendicular to the interface is referred to as
the z axis.

We shall consider atomic-like charge densities g(s)
i (again, as before, the superindex

s = {1, 2} refers to the side of the interface, left or right, where a given ‘atom’ i is located) of
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the sum of two Gaussians, centred at each atomic site z(s)
i ,

g(s)
i

(
z − z(s)

i

)
= An,s

i

σn,s

√
2π

exp

⎡
⎢⎣−

(
z − z(s)

i

)2

2σ 2
n,s

⎤
⎥⎦

− Ae,s
i

σe,s

√
2π

exp

⎡
⎢⎣−

(
z − z(s)

i − δ
(s)
i

)2

2σ 2
e,s

⎤
⎥⎦ . (53)

The positive (negative) Gaussian, whose standard deviation is denoted by σn (σe), mimics the
nuclear charge density (electronic charge density) of atom i centred on position zi . By imposing
σn < σe we make the ‘nuclear’ charge more confined than the ‘electronic’ charge. Since the
Gaussians are normalized, a net charge per atomic site can be simulated by making An,s

i 
= Ae,s
i .

The parameter δ
(s)
i allows us to displace the electronic clouds with respect to the nuclei and

thereby produce a net dipole moment on a particular atom.
The atomic-like charge densities are arranged in bulk unit cells that might contain one

single atom or a more complicated polyatomic basis. In this section we shall assume that the
bulk unit cells of each of the materials that form the superlattice contain a single atom that does
not carry any charge (An,s

i = Ae,s
i ∀i ) or dipole moment (δ(s)

i = 0∀i ). For the polarized case, we
refer the reader to section 9. Thus, for the unpolarized interface each material can be considered
as a one-dimensional monoatomic chain, where consecutive ‘atoms’ are separated by a distance
a(s). The interatomic distance at the interface, aint, is taken as aint = a(1)+a(2)

2 . Then, consecutive
interatomic distances from the interface evolve smoothly towards the bulk value as a function
of the distance to the interface. In our simulations, when we move from the interface towards
material s, s = {1, 2}, the second interatomic distance is set up to 1

4 a(o)+ 3
4 a(s), where a(o) is the

lattice constant of the other material. The bulk value is recovered only at the third interatomic
distance from the surface.

A supercell is then built, as described in section 2. The basic unit cell, periodically repeated
in space, contains a suitable number N1 and N2 of bulk unit cells of the two materials. The
microscopic charge density, ρ(z), is defined as the superposition of all the atomic-like charge
densities:

ρ(z) =
N1∑

i=1

g(1)
i (z − z(1)

i ) +
N2∑
j=1

g(2)
j (z − z(2)

j ). (54)

The resulting model is illustrated for the non-polar case (δ(s)
i = 0, and An,s

i = Ae,s
i ∀ i ) in

figure 5; the parameters of the model are specified in the figure caption. An isolated atomic-like
charge density is shown in the inset. The sizes of the layers of the two materials that constitute
the multilayer can be tuned by changing the number of building blocks in the left, N1, or in the
right, N2.

ρ(z) is formed from ρ(z) by convoluting it with the filter function. Such convolutions are
most conveniently formed by fast Fourier transforms, which require the discretization of space
into a uniformly spaced grid of points.

7. Results: toy model, non-polar case

In figure 6(a) we illustrate the specific toy model we shall analyse in detail for the unpolarized
case. The parameters of the model are An,1 = Ae,1 = 1, σn,1 = 0.5, σe,1 = 2.0,
An,2 = Ae,2 = 2, σn,2 = 0.7, σe,2 = 4.5, δ(1) = δ(2) = 0 for all the ‘atoms’, a(1) = 6, and
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Figure 5. Illustration of the toy model used to simulate microscopic charge densities in a
multilayered material. A non-polar case is represented (δ(s)

i = 0 and An,s
i = Ae,s

i ∀i). The remaining
parameters have been chosen as An,1 = Ae,1 = 1, σn,1 = 0.5, σe,1 = 2.0, An,2 = Ae,2 = 2,
σn,2 = 0.7, σe,2 = 4.5, δ(1) = δ(2) = 0 for all the ‘atoms’, a(1) = 6, and a(2) = 8. Within each
period of the multilayer, there are 10 atomic layers of the left material and 10 of the right. Only a
small portion, centred at the interface, of the microscopic charge density of the supercell is shown
here. Inset: charge density of an individual ‘atom’ on the left. Atomic units are used.

Figure 6. (a) Microscopic charge density ρu(z) within a unit supercell for an unpolarized system.
The widths of the left (1) and right (2) materials have both been set to 10 atomic layers, with
interatomic separations of a(1) = 6 and a(2) = 8. The rest of the parameters of the toy model are as
in the caption of figure 5. (b) Interface-induced charge density �ρu(z) defined by subtracting the
charge density of a reference system, defined as in equation (6). The interface plane zint is positioned
at the middle of the separation between the last atomic plane on the left and the first atomic plane
on the right. (c) Nanosmoothed charge density ρu(z) of the microscopic charge density. The
nanosmoothing function is defined as in equation (15) with l1 = a(1) = 6, and l2 = a(2) = 8,
single interplanar distances along z for each material. Atomic units are used.

a(2) = 8. Atomic units are used throughout the paper. First, we consider a reference density
ρ0(z) defined as in equation (6), locating the interface at zint half way between the rightmost
atomic layer of material 1 and the leftmost atomic layer of material 2. �ρu(z), defined as in
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Figure 7. Blow up of the interface-induced charge densities obtained from the subtraction of the
reference bulk density and from nanosmoothing. Their difference is clearly shown.

equation (7), is plotted in figure 6(b). Next, we construct ρu(z) from ρu(z) directly using a
nanosmoothing function f (z − z ′) defined as in equation (15), in which l1 = a(1) = 6, and
l2 = a(2) = 8. The smoothed charge density ρu(z) is shown in figure 6(c). As we have already
discussed in section 5.3, the regions R′

s within which ρu vanishes lie within the regions Rs

within which �ρu vanishes, because smoothing ρu within Rs brings into ρu values of ρu for
z outside Rs . Due to the symmetry of the microscopic charge density at the centre of each
layer, the interfacial charge density between material 1 and material 2 is the mirror image of
the interfacial charge density between material 2 and material 1 (see the centre and the edges
of the figures 6(b) and (c)).

A closer look at the interface region is shown in figure 7. The discontinuity of �ρu at the
interface plane is clearly observed. Also, we can see how �ρu displays large fluctuations at the
atomic scale in the neighbourhood of the interface due to the interface-induced relaxations of
the atomic layers. The positions of the atoms in the layers close to the interface do not coincide
with the positions of the atoms after the cleaving of the bulk to define ρ0 (see section 4).
Therefore, in the computation of �ρu we are subtracting charge densities centred on different
positions. The nanosmoothing procedure eliminates not only the contributions associated with
ρ0 in the bulk regions R1 and R2, but it filters out the oscillations due to the interface-induced
relaxations while producing a continuous charge distribution. Nanosmoothing ρu is clearly
superior to forming �ρu .

In figure 8, we show ρu(z) for three different smoothing functions, defined as in
equation (15) with l1 = a(1) = 6, and l2 = a(2) = 8; l1 = 2a(1) = 12, and l2 = 2a(2) = 16;
and l1 = 3a(1) = 18, and l2 = 3a(2) = 24, respectively. The widths of the regions where
ρu(z) vanishes (R′

1 and R′
2) depend on the width of the filter function. As a general rule,

the more extended the filter function, the narrower the R′ regions. Although the profiles
of the charge density differ significantly, the three charge distributions have the same net

charge density Qu and dipole moment density pu (see table 1). This striking sensitivity
of the nanosmoothed charge density to the smoothing function impedes detailed physical
interpretation of its features.

Even though we are dealing with an unpolarized interface made of the juxtaposition of
neutral and non-polar atoms, the interface charge density Qu , equation (4a), vanishes if and
only if the integration limits z1 and z2 are taken midway between atoms inside each material
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Figure 8. Nanosmoothed charge density ρu(z) obtained by nanosmoothing the planar average
charge density ρu(z) shown in figure 6(a) with three different filter functions. They are defined
following equation (15) with l1 = a(1) = 6, and l2 = a(2) = 8 (solid line); l1 = 2a(1) = 12,
and l2 = 2a(2) = 16 (dashed line); and l1 = 3a(1) = 18, and l2 = 3a(2) = 24 (dotted line),
respectively.

Table 1. Interfacial charges and dipole moments of the microscopic interface-like charge density
shown in figure 6(a). The interface charge Qu and the dipole moment pu densities are defined
respectively in equations (4a) and (4b) and the integration limits z1 and z2 taken midway between
the atoms at the centre of each material layer. When a reference charge density of an ideal
interface is subtracted, the corresponding charge �Qu and dipole moment �pu are defined as in
equations (8a) and (8b) with the same integration limits as before. Since the nanosmoothed charge
density does not play any role in the definition of Qu , pu , �Qu , and �pu , these magnitudes are

insensitive to nanosmoothing. Qu and pu are defined in equations (36a) and (36b). l1 and l2
are the lengths of the square wavefunctions entering in the definition of the smoothing function,
equation (15).

l1 l2 Qu �Qu Qu pu �pu pu

a(1) = 6 a(2) = 8 0 −0.113 0 1.749 −4.821 2.157
2a(1) = 12 2a(2) = 16 0 2.157
3a(1) = 18 3a(2) = 24 0 2.157
4a(1) = 24 4a(2) = 32 0 2.157
5a(1) = 32 5a(2) = 40 0 2.121
a(1)

2 = 3 a(2)

2 = 4 0 1.871

layer, meeting the requirements for symmetry described in section 5.5 (see table 1). �Qu ,
equation (8a), on the other hand, does not vanish since, with our criterion for locating the
interface plane zint, we do not conform to the requirement that zint − z1 contains an integer
number of unit cells of the left material, and z2 − zint contains an integer number of unit cells
of the right material. Consequently, the integral of the reference charge density ρ0 between z1

and z2 carries a net charge. On the other hand, as it should, Qu vanishes and is independent of
the integration limits provided that z1 lies in R′

1 and z2 lies in R′
2.

We have also calculated the corresponding interface dipole densities pu , equation (4b);
�pu, equation (8b); and pu , equation (36b), with the results displayed in table 1. By definition,
pu and �pu are independent of the nanosmoothing procedure. As long as l1 and l2 equal an
integer number of lattice constants of the bulk unit cell of the material along z, pu is insensitive
to the shape and range of the smoothing function. Note that, as expected after the discussion
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Figure 9. Planar-averaged electrostatic potential computed by solving the one-dimensional Poisson
equation, equation (2), with the charge density ρu(z) shown in figure 6(a), V u(z), and by solving

equation (19) with the charge density ρu(z) shown in figure 6(c), V u(z). The integration limits z1 in
R′

1 and z2 in R′
2 are indicated by dotted lines. The electrostatic potential shifts �V u (equation (55))

and �V u (equation (27)) defined as the difference of the corresponding potentials at the points z1

and z2 are also shown. Atomic units are used.

in section 5.5, the nanosmoothed dipole density pu differs from both �pu, computed from
�ρu(z), and pu computed from ρu(z). The latter two also differ because ρ0(z) defined in
equation (6) generates an extra dipole moment density when integrated within our integration

limits. Thus the electrostatic potential shifts �V u and �V u differ correspondingly. The shift

�V u is the physically meaningful one because what enters in the band offsets are the local
averages of the electrostatic potentials in each material, which are independent of the location

of z1 and z2 within R′
1 and R′

2 entering in equation (27) defining �V u . The analogous relation
for �V u ,

�V u = V u (z2) − V u (z1) , (55)

shows that �V is the difference of the two potentials at specific points within regions in which

V (z) varies rapidly. In figure 9 we show V (z) and V (z) and indicate the positions z1 and z2.

It is clear that �V is about 20% larger than �V , explaining the relation between pu and pu

in table 1, the difference arising from the way V is sampled by nanosmoothing and by the
selection of z1 and z2.

In table 1 we also show two cases where the nanosmoothing does affect the value pu . First,
the value of pu departs from the correct value 2.157 when the range of the smoothing function,
L in equations (13a) and (13b), is of the same magnitude as the width of the layer of one of the
materials, as for l1 = 5a(1) = 30 and l2 = 5a(2) = 40, so L = l1 + l2 = 70, slightly larger than
the width of material 1, made of 10 layers with an interlayer distance a(1) = 6. Under these
circumstances, it is not possible to define regions R′

1 and R′
2 where ρu(z) vanishes, impeding a

proper location of the integration limits z1 and z2. Second, the same occurs when the range of
every filter function entering equation (15) does not equal an integer number of lattice constants
of the bulk unit cell along z, as for l1 = a(1)

2 = 3, and l2 = a(2)

2 = 4. In such a case, the charge
density after nanosmoothing, ρu(z), still shows large and rapid oscillations.
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Figure 10. Negative cumulative charges defined in equation (30a) for the nanosmoothed charge
densities shown in figure 8. We can estimate the magnitude of the charge transferred per unit area
of the interface q from the supremum of this cumulative charge and the interface position from the
position where this supremum appears. Numerical values are given in table 2.

Table 2. Magnitude of the transferred charge density, screening length and position of the interface
computed from the nanosmoothed charge densities plotted in figure 8. l1 and l2 are the lengths of
the square wavefunctions entering in the definition of the smoothing function, equation (15). Since
the interface is unpolarized, the charge at each side of the interface must be equal in magnitude and
opposite in sign.

l1 l2 zint q λ

6 8 58.083 0.253 8.517
12 16 57.709 0.143 15.041
18 24 57.771 0.095 22.660

In table 2 we report the amount of charge transferred from one material to the other,
the screening length and the interface position computed with the method summarized in
section 5.4 for the nanosmoothed charge densities plotted in figure 8. The negative cumulative
charges are displayed in figure 10. As expected, the value of q is sensitive to the smoothing
function, decreasing with the increasing of its range. Accordingly, the screening length is also
sensitive to the range of the smoothing function L, taking a value that is roughly the greater
of l1 and l2. Nevertheless, the position of the interface seems to be insensitive to the filtering
function.

The results displayed in figure 8 for ρ(z) demonstrate that the larger the width of the
smoothing function, the more complex the spatial dependence of ρ(z) and the less it resembles
a simple interface charge density. The introduction of multiple extrema is artificial and is caused
by excessive transfer of charge back across the interface by smoothing. This back transfer of
charge is manifested clearly in the values of q in table 2. Accordingly the smallest allowable
widths ls = as , should be used for nanosmoothing. The resulting values of q and λ are the best
estimates which can be extracted by nanosmoothing.

Now, as a final test of the insensitivity of the dipole moment density and potential shift to
the shape of the smoothing function, we shall simplify the toy model to one with a common
atomic separation in both materials. This opens three simple options for the filter function. We
can set f equal to a single ω when the filter function adopts a square shape (see figure 3(a)),
we can set f equal to the convolution of two ω s with the same l, a triangle function,

f (z − z′) = 1

l2

(
l − ∣∣z − z′∣∣) , (56)
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Table 3. Interfacial charge and dipole moment densities for a microscopic interface-like charge
density obtained with the following parameters: An,1 = Ae,1 = 1, σn,1 = 0.5, σe,1 = 2.0,
An,2 = Ae,2 = 2, σn,2 = 0.7, σe,2 = 4.5, δ(1) = δ(2) = 0 for all the ‘atoms’, a(1) = 10, and
a(2) = 10. The meaning of the symbols and integration limits is as in table 1.

l1 l2 Qu �Qu Qu pu �pu pu

Square filter function 10 — 0 0 0 1.202 1.202 1.813
50 — 0 1.813

Triangle filter function 10 10 0 0 0 1.202 1.202 1.813
20 20 0 1.813

Trapezoidal filter function 10 20 0 0 0 1.202 1.202 1.813
5 10 0 1.813

or we can set f equal to the convolution of two ω s with different l, a trapezoidal function, as in
equation (17) and in figure 3(b). Comparing the results of the smoothing with the square wave,
the triangle, and the trapezoidal function for various values of l allows us to establish which
physical properties are insensitive both to the range and to the shape of the smoothing function.

As illustrated in table 3, as soon as l1 and/or l2 equal an integer number of lattice constants
of the bulk unit cell of the relevant material along z, pu is insensitive to the shape (triangular,
square or trapezoidal) and range of the smoothing function.

8. Polarized systems

Up to now we have dealt with materials unpolarized except at the interfaces. In such systems
it was possible to identify bulk-like regions in the middle of each layer where the microscopic
charge density is unaffected by the presence of interfaces and returns to the bulk microscopic
charge density, which is centrosymmetric within a unit cell. We now turn our attention to
polarized interfaces, where at least one of the materials has a non-vanishing polarization �P .

Basic electrostatic arguments that can be found in any textbook [21, 32] show that a non-
uniform polarization in a dielectric generates a volume charge density, the polarization charge
ρpol(�r), whose value at any point of space is given by

ρpol (�r) = −∇ · �P (�r) . (57)

Even in the case of uniformly polarized material, where �P is constant and therefore its
divergence vanishes inside the dielectric, the discontinuity of the polarization at the surface
or interface gives rise to a net surface or interface charge density σpol given by the familiar form

σpol = �P · n̂, (58)

where n̂ is a unit vector normal to the surface or interface pointing outwards.
In the case of an interface, the other material at the interface responds to this perturbation in

order to minimize the electrostatic energy cost associated with the build up of the polarization
charge ∇ · �P at the interfaces. If the second material is a dielectric, a uniform polarization
is induced within it as well [33, 34]. If the second material is a metal, a screening
charge is induced that spreads over a finite distance (the screening length) in the electrode,
producing additional dipole layers at each polar dielectric/metal interface. If the screening
of the polarization charge is not perfect, a residual depolarizing field appears inside the
dielectric [5, 6].

24



J. Phys.: Condens. Matter 19 (2007) 213203 Topical Review

We now face the same question as for the unpolarized case: how to extract from the results
of the first-principles calculations values of the physical quantities of interest (polarization and
screening charge densities, screening lengths, depolarizing fields, etc).

In parallel to what was done for the unpolarized case, we can define the net charge density
Q p and dipole moment density pp associated with the microscopic charge density of the polar
interface ρ p as

Q p =
∫ z2

z1

dz ρ p(z), (59a)

pp =
∫ z2

z1

dz zρ p(z). (59b)

The computation of these two quantities present the same difficulties as for the unpolarized
case, summarized in section 3.

The approach of determining a reference interface charge density ρ0(z) as in equation (6)
and defining an interface-induced deformation of the charge density �ρ p(z) by subtracting
ρ0(z) from the microscopic charge density,

�ρ p(z) = ρ p(z) − ρ0(z), (60)

discussed in section 4 for the unpolarized case, still allows for the identification of two regions
R1 and R2 where �ρ p(z) vanishes (see figure 11(b)). Therefore we can define both the interface
charge and dipolar densities invariant with respect to the position of the integration limits z1

and z2, as long as z1 lies in R1 and z2 lies in R2.
However, on top of all the drawbacks to that approach presented in section 4, there is an

additional pitfall now: an extra dependence on the position of the integration limits z1 and z2

appears in the computation of the interface dipole moment from the definition of the reference
interface position zint. Indeed, for at least one of the materials the dipole moment density does
not vanish within the bulk unit cell,

p(s)
0 =

∫
a(s)

bulk

dz zρ(s)
0 (z). (61)

Therefore, the dipole moment density �pp associated with �ρ p(z) does not equal pp defined
in equation (59b), not even in the case where zint − z1 contains an integer number M1 of unit
cells of the left material and z2 − zint contains an integer number M2 of unit cells of the right
material,

�pp =
∫ z2

z1

dz z�ρ p(z) =
∫ z2

z1

dz z
[
ρ p(z) − ρ0(z)

]

=
∫ z2

z1

dz zρ p(z) −
∫ z2

z1

dz zρ0(z)

= pp − M1 p(1)
0 − M2 p(2)

0 . (62)

Nevertheless, the nanosmoothing procedure developed in section 5.1 remains a useful
tool, since the methodology for constructing the nanosmoothed charge density, equation (12),
is independent of whether the microscopic charge density is polarized or not. Both the
nanosmoothed Poisson equation (equation (19)) and the analysis of the insensitivity of the
dipole moment density to the smoothing function (section 5.3) still hold under the same
conditions for the smoothing function as for the unpolarized case, because the fundamental
starting point for the derivation, the microscopic Poisson equation and the existence of regions
with a negligible nanosmoothed charge R′

1 and R′
2, are insensitive to the polarization state of

the microscopic charge density.
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Figure 11. (a) Microscopic charge density ρ p(z) within a unit supercell for a polarized system,
with the polarization induced by a displacement of the electronic charge in one of the materials.
The widths of the layers of both material and the rest of the parameters of the toy model are as in
the caption of figure 5, with the exception of δ

(1)
i = 1.0, where i runs over all the ‘atoms’ of material

1. (b) Interface-induced deformation of the charge density �ρ p(z) defined as in equation (60). As
before, the interface plane zint is positioned at the middle of the separation between the last atomic
plane on the left and the first atomic plane on the right. (c) Nanosmoothed charge density ρ p(z)
of the microscopic charge density. The nanosmoothing function is defined as in equation (15) with
l1 = a(1) = 6, and l2 = a(2) = 8, single interplanar distances along z for each material. Atomic
units are used.

9. Results: toy model, polarized

In figure 11(a) we illustrate the first specific toy model we shall analyse in detail for the
polarized case. The parameters of the model are the same as in the caption of figure 5 with the
exception of the parameter δ

(1)
i , that now takes a non-zero value δ

(1)
i = 1.0, where i runs over all

the ‘atoms’ of material 1. This toy model simulates a multilayer in which a net polarization has
been induced in material 1 by displacing the ‘electronic clouds’ rigidly 1.0 length units towards
the right. The neutral but polarized atom of this toy model can be thought of as representing
the overall neutral atomic planes of a ferroelectric within which a dipole moment density is
generated by buckling or puckering. In principle, the charge density of material 2 would be
modified as a response to the presence of a polarization in material 1. This polarization-induced
response, which should be computed self-consistently, is not considered in the present simple
toy model. The displacement of the negative charges translates into the asymmetry of the
charge density inside material 1 represented in figure 11(a). The interface-induced deformation
of the charge density �ρ p(z), defined as in equation (60), is shown in figure 11(b) where, as
for the unpolarized case, the position of the interface zint has been located half way between
the rightmost left atomic layer and the leftmost right atomic layer. The nanosmoothed charge
density ρ p(z) is displayed in figure 11(c), obtained with the same smoothing function as the
one used in the construction of ρu(z) in figure 6(c). In the last two panels, the two regions
inside materials 1 and 2 where �ρ p(z) and ρ p(z) vanish are clearly shown.

Some of the features already discussed in section 7 for the unpolarized interface still remain
valid for the polarized case. In particular: (i) the regions R′

s within which ρ p vanishes lie within
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Table 4. Interfacial charges and dipole moment densities of the microscopic interface-like charge
density for the polar interface shown in figure 11(a). The meaning of the different symbols is as in
the caption of table 1, with the subscript u replaced by p for the polar case.

l1 l2 Q p �Q p Q p pp �pp p p

a(1) = 6 a(2) = 8 −0.136 −0.249 −0.167 −7.055 −12.708 −7.509
2a(1) = 12 2a(2) = 16 −0.167 −7.509
3a(1) = 18 3a(2) = 24 −0.167 −7.509
4a(1) = 24 4a(2) = 32 −0.166 −7.754
a(1)

2 = 3 a(2)

2 = 4 −0.158 −7.569

Rs within which �ρ p vanishes, because smoothing ρ p within Rs brings into ρ p values of ρ p

for z outside Rs ; (ii) the discontinuity of �ρ p at the interface and the large fluctuations at
the atomic scale in the neighbourhood of the interface; (iii) the smooth and continuous profile
(note the change of scale in the charge density in figures 11(b) and (c)) of ρ p, highlighting its
advantages with respect to �ρ p. However, some other issues are new. Now, as a consequence
of the asymmetry of ρ p(z), the charge density at the interface regions, defined as the ranges
where �ρ p(z) and ρ p(z) differ significantly from zero, are different in the adjacent interfaces
contained in our simulated supercell (see the centre and the edge of figures 11(b) and (c)). They
are not simply reflections of one another as in figures 6(b) and (c).

In table 4 we report the values of the interface charges computed from ρ p(z) (Q p), �ρ p(z)

(�Q p), and ρ p(z) (Q p). The integration limits z1 and z2 are taken midway between the atoms
at the centre of each material layer. In contrast to the unpolarized interface, Q p does not vanish.
The surplus of negative charge is due to the charge density entering region z2 − zint from the
left from the region between zint − z1 which is not compensated by the departure of any charge.

Since ρ p(z) is not even about z1, Q p 
= Q p. As happened in the unpolarized case, as long as
l1 and l2 equal an integer number of lattice constants of the bulk unit cell of the material along

z, Q p and p p are insensitive to the shape and range of the smoothing function. Only when
the range of every filter function entering in equation (15) does not equal an integer number
of lattice constants of the bulk unit cell, or when the range of the smoothing function L is of

the same order as the width of the layer of one of the materials, do Q p and pp differ from the
correct value.

Subtracting from ρ p(z) the related ρu(z), a microscopic charge density constructed by
nanosmoothing with filter functions defined with the same parameters with the exception
of the displacement of the electronic charge, we obtain the profile of the nanosmoothed
polarization-induced charge density, figure 12, whose integral between z1 and z2 gives σpol

as the accumulation of charge at the interface. Note that since the resulting Qu vanishes, Q p

is identical to σpol. Although, as listed in table 4, the amount of charge accumulated at the
interface is independent of the shape and range of the filter function used (provided that l1

and l2 are integer numbers of lattice constants of the bulk unit cell of the material along z),
the profile of the polarization-induced charge density is not. The wider the nanosmoothing
function, the larger the range of the polarization charge density. Again, this sensitivity of the
shape of the smoothed charge density to the nanosmoothing function spoils a direct physical
interpretation of its features. The smallest values of l1 and l2, a single lattice constant of each
material, yields, as for the unpolarized case, the simplest and physically most relevant profile
for ρ p.

Solving the nanosmoothed Poisson equation, equation (19), for the nanosmoothed charge

density of figure 11(a) we obtain the nanosmoothed potential V p(z) displayed in figure 13.
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Figure 12. Difference between the nanosmoothed charge density for the polarized interface and
an unpolarized interface. The parameters of the microscopic charge density as are in figures 11
and 5, respectively. Three different filter functions are used for the nanosmoothing, with the same
parameters as in figure 8.

Figure 13. Planar averaged electrostatic potential computed by solving the one-dimensional
Poisson equation, equation (2), with the charge density ρ p(z) shown in figure 11(a), V p(z),

and by solving equation (19) with the charge density ρ p(z) shown in figure 11(c), V p(z). The

nanosmoothing function is defined as in equation (15) with l1 = a(1) = 6, and l2 = a(2) = 8, single
interplanar distances along z for each material. Atomic units are used.

This electrostatic potential has two distinct features: (i) a jump at each interface due to the
interface dipole moment already present in the unpolarized case (see figure 9 and table 1); (ii) a
field generated by the polarization charge σpol at the interface. We can isolate this field by
subtracting the nanosmoothed potential for the polarized (figure 13) and unpolarized (figure 9)
systems. The result is shown in figure 14. The electric field can be computed from the slope of
the nanosmoothed potential.

The magnitude of the electric field is related to the magnitude of the polarization charge
σpol. The periodic boundary conditions enforces that E (1)N1a(1)

bulk + E (2)N2a(2)
bulk = 0, where N1

and N2 are the number of unit cells of materials 1 and 2 stacked to build the superlattice (see
section 6). Since each interface carries a charge of magnitude σpol, the electric field changes its
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Figure 14. Difference of the nanosmoothed potential for the polarized (dashed line in figure 13)
and unpolarized (dashed line in figure 9) cases. The magnitude of the electric field E generated by a
periodic array of polarization charge distributions σpol can be computed from the slope of the profile
of the potential within material 1 and material 2. Atomic units are used.

value at the interface as E (2)−E (1) = 4πσpol, yielding values for the fields E (1) = − 4πσpol N2a(2)
bulk

N1a(1)
bulk+N2a(2)

bulk

and E (2) = 4πσpol N1a(1)
bulk

N1a(1)
bulk+N2a(2)

bulk

. Taking σpol from table 4, we infer a value of E (1) = 1.196, and

E (2) = −0.897, in excellent agreement with the slopes computed in figure 14.
From the knowledge of the change of the macroscopic electric field across the interface we

can determine the difference in the zero-field polarization of the two materials. Assuming that
in our toy model the dielectric constants of the two materials are the same and equal to 1, then

−4π
(P (2) − P (1)

) = ε
(E (2) − E (1)

)
. (63)

Since E (2) − E (1) = 4πσpol,

− (P (2) − P (1)
) = σpol. (64)

But our material 2 is unpolarized, so P (2) = 0, and we arrive at the conclusion that

P (1) = σpol. (65)

This conclusion can be checked analytically in our particular toy model, where the charge
density is the juxtaposition of ‘atomic-like’ charge densities. Integrating the first moment of
the microscopic charge density for the slab of material 1 used to build the superlattice, defined
in equation (54), we arrive at the conclusion that P (1) = − δ(1)

a(1)
bulk

, whose numerical value in our

numerical example equals the polarization charge shown in table 4. A generalization for the
dielectrically mismatched interface can be found in section III. F of [35].

A second toy model we shall analyse for the polarized case is shown in figure 15. It is
made of a one-dimensional chain in which the unit cell of material 1 has two atoms per unit
cell. Inside the unit cell, one of the atoms is charged negatively and the other positively so that
the overall charge in the unit cell is neutral. Thus, besides the electronic polarization discussed
in the previous case, polarization can be induced by ionic displacements. The parameters of
the model are as in figure 11, with the exception of Ae,1 = 1.5 for the odd ‘atoms’ (net charge,
−0.5 per site), Ae,1 = 0.5 for the even ‘atoms’ (net charge, +0.5 per site), and δ

(1)
i = 0.0,

where i runs over all the ‘atoms’ of material 1 (no displacement of the electronic cloud is
considered).
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Figure 15. (a) Microscopic charge density ρ p(z) within a unit supercell for a polarized system in
which the unit cell of material 1 has two atoms of opposite charge in the unit cell. The widths of
the layers of both material and the rest of the parameters of the toy model are as in the caption
of figure 11, with the exception of Ae,1 = 1.5 (net charge, −0.5 per site) for the odd atoms and
Ae,1 = 0.5 (net charge, +0.5 per site) for the even atoms of material 1, and δ

(1)
i = 0.0, where

i runs over all the ‘atoms’ of material 1. (b) Interface-induced deformation of the charge density
�ρ p(z) defined as in equation (60). As before, the interface plane zint is positioned at the middle
of the separation between the last atomic plane on the left and the first atomic plane on the right.
(c) Nanosmoothed charge density ρ p(z) of the microscopic charge density. The nanosmoothing

function is defined as in equation (15) with l1 = a(1) = 6, and l2 = a(2) = 8, single interplanar
distances along z for each material. Atomic units are used.

The main conclusions that can be drawn from figure 15 are the same as in figure 11. As we
did for the electronic polarized case, we can infer the value of the bulk zero-field polarization
from the polarization charge at the interface, that in this case amounts to +0.25.

10. Summary and discussion

The problem of how to extract from the immense detail provided by the first-principles
calculations, with resolution at the atomic scale, reliable values of physical quantities of interest
which enter into nanoscale electrostatic analysis has been reviewed.

This problem is particularly challenging in the case of interfaces between quite different
materials, since all the relevant magnitudes (interface charge and dipole densities, screening
lengths, etc) are overwhelmed by the large and rapid oscillations of the microscopic charge
density.

The different procedures to filter out the periodic oscillations of the microscopic quantities,
which typically follow the underlying atomic structure, preserving only those features that
change in the vicinity of a surface or interface are critically analysed, and the criteria under
which they accurately extract the quantities of interest are discussed.

The approach of defining a reference interface charge density from the bulk unperturbed
charge densities of each material is spoilt by the fact that the interface position is undetermined.
The profile of the charge density at the interface is discontinuous and displays large fluctuations
in the neighbourhood of the interface due to the interface-induced atomic relaxations.
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Moreover, both the interface charge and dipole densities (and so the potential drop at the
interface) are not unique in this approach, since they depend critically on the position of the
interface.

A clearly superior method consists in nanosmoothing the microscopic charge density by
taking its convolution with a filter function. This procedure eliminates the contributions coming
from the bulk together with the oscillations due to the interface-induced relaxations while
producing a continuous charge distribution.

In this work, we prove rigorously that the interface charge and dipolar densities are
independent of the nanosmoothing function used, provided the following conditions are met:

(i) It is positive definite, even and normalized within the support region of space within which
it is defined (equations (13a)–(13d)).

(ii) It must be sufficiently smooth itself for the Poisson equation to remain invariant after
nanosmoothing. By ‘sufficiently smooth’ we understand that the second derivative
must exist, and both the function and the first derivative must vanish at the end points
(equations (18a)–(18c)).

(iii) In practice, the convolution is done using fast Fourier transforms. Therefore, although the
nanosmoothing function might violate some of the previous conditions, the family of the
finite Fourier series involved in the convolutions is a distribution which converges to the
smoothing function in the limit, meeting all the requirements along the way.

(iv) If square-wave filter functions (or convolutions of them) are chosen as filtering functions,
the width of each filter function l1 and l2 must be an integral number of the lattice constant
of each material in order to have charge and dipole moment densities (and therefore
potential shifts across the interface) insensitive to the smoothing function.

(v) The smallest acceptable value for l1 and l2 should be used in order to avoid the presence
of multiple maxima and minima in the smoothed charge density.

(vi) The total width of the filter function L should be chosen on the scale of the unit cell
length or larger, but significantly smaller than the regions Rs of each material where the
microscopic charge density is unaffected by the presence of the interface.

(vii) After nanosmoothing, the charge density displays two regions R′
s , within the Rs , where

the smoothed charge density ρ vanishes. The integration limits z1 and z2 used to compute
the interface charge and dipole densities must lie in these regions.

(viii) Once the integration limits are chosen, the charge density at the interface computed
from the microscopic and the nanosmoothed charge density are equal if and only if the
microscopic charge density is symmetric for |z − z1,2| � L. The interface dipole density
computed from the microscopic and the nanosmoothed charge density are never equal.

(ix) Nanosmoothing is only valid for computing charge and dipole moment densities. Nothing
can be said about the shape of the nanosmoothed charge density at the interface since it
depends critically on the filter function.

(x) By using the smallest acceptable values of l1 and l2, generally one unit cell length,
reasonable estimates of the density of the charge transferred across the interface and of
the dipole layer width can be made.

The nanosmoothing procedure is a powerful technique that allows us to extract the
information relevant for computing the change in the average potentials and charge densities
from one side of the interface to the other, opening the door to the calculations of band
offsets [7, 8, 17, 18], polarization [29] and dielectric permittivity [30] profiles, effective
charges [36], and force constants [37] in semiconductor–semiconductor interfaces, and
depolarizing electric fields and screening lengths in real ferroelectric capacitors [5, 6]. The
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present work sets the basis for a rigorous selection of the minimum size of the supercell required
to obtain accurate and smoothing-independent results.

Finally, we should point out that Wannier functions can also probe the local electron
structures of interfaces [29, 30, 38, 39].
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Appendix A. Transverse averaging of the Poisson equation

The microscopic Poisson equation is written as

∇2V (�r) = −4πρ (�r) . (A.1)

Integrating both sides of equation (A.1) in the (x, y) plane and dividing by the surface S of the
interface unit cell, we get

1

S

∫ ∫
S
∇2V (�r) dx dy = −4π

1

S

∫ ∫
S
ρ (�r) dx dy

= −4πρ(z). (A.2)

We now write out the integral of the left-hand side of equation (A.2) explicitly:

1

S

∫ ∫
S
∇2V (�r) dx dy = 1

S

∫ ∫
S

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
V (�r) dx dy

= 1

S

∫ ∫
S

∂2V (�r)

∂x2
dx dy

+ 1

S

∫ ∫
S

∂2V (�r)

∂y2
dx dy + 1

S

∫ ∫
S

∂2V (�r)

∂z2
dx dy. (A.3)

The first two integrals on the right-hand side can be performed trivially:

1

S

∫ ∫
S

∂2V (�r)

∂x2
dx dy = 1

S

∫
∂V (�r)

∂x

∣∣∣∣
boundary x

dy = 0, (A.4)

where boundary x refers to the two intersections of the boundary of the unit cell with the x
axis. Since the potential and all its derivatives are periodic in the plane, the previous integral
vanishes. The same holds for the second integral in the right-hand side of equation (A.3).

Regarding the third integral in equation (A.3), we can take the second derivative with
respect to z out of the integral:

1

S

∫ ∫
S

∂2V (�r)

∂z2
dx dy = ∂2

∂z2

(
1

S

∫ ∫
S

V (�r) dx dy

)

= ∂2V (z)

∂z2
= d2V (z)

dz2
. (A.5)

Gathering together the results of equations (A.2)–(A.5) we can conclude that

∇2V (�r) = ∇2V (z) = d2V (z)

dz2
= −4πρ(z); (A.6)

that is, the transverse average of the Poisson equation yields a one-dimensional Poisson
equation for the transverse average of the potential.
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Appendix B. Nanosmoothing of the Poisson equation

Applying the nanosmoothing procedure to the electrostatic potential V (�r) results in

V (z) =
∫ z+L

z−L
dz′ f (z − z ′)V (z), (B.1)

where V (z) is the planar average of the of V (�r) in planes parallel to the interface,

V (z) = 1

S

∫
S

V (�r) dx dy, (B.2)

and f (z − z ′) vanishes for z ′ � z + L and z ′ � z − L. Taking the second derivative of the
nanosmoothed potential and requiring that d2 f (z−z′)

dz2 exists yields

∇2V (z) = d2 V (z)

dz2

=
∫ z+L

z−L
dz′ d2

dz2

[
f (z − z′)V (z′)

]

=
∫ z+L

z−L
dz′ d2 f (z − z ′)

dz2
V (z ′)

=
∫ z+L

z−L
dz′ d2 f (z − z′)

dz′2 V (z′)

= d f (z − z′)
dz′ V (z ′)

∣∣∣∣
z+L

z−L

−
∫ z+L

z−L
dz′ d f (z − z′)

dz′
dV (z ′)

dz′ . (B.3)

Requiring that

d f (z)

dz

∣∣∣∣−L

= d f (z)

dz

∣∣∣∣+L

= 0, (B.4)

makes the first term in the right-hand side of equation (B.3) vanish. Integrating the second term
in the right-hand side of that equation yields

−
∫ z+L

z−L
dz′ d f (z − z ′)

dz′
dV (z ′)

dz′ = − f (z − z ′)
dV (z ′)

dz′

∣∣∣∣∣
z+L

z−L

+
∫ z+L

z−L
dz′ f (z − z′)

d2V (z ′)
dz′2 , (B.5)

so that we arrive at the conclusion that

∇2V (z) = d2 V (z)

dz2
=

∫
dz′ f (z − z ′)

d2V (z′)
dz′2 = d2V (z)

dz2
. (B.6)

Appendix C. Electrostatic potential shift and interface dipole density

The formal solution of the Poisson equation, equation (19), is

V (z) = −2π

∫
dz′ |z − z′|ρ(z′)

= −2π

[∫ z

−∞
dz′ (z − z ′)ρ(z ′) +

∫ +∞

z
dz′(z ′ − z)ρ(z′)

]
. (C.1)
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The electrostatic potential shift across the interface is, therefore,

�V = V (z2) − V (z1) = 4π

∫ z2

z1

dz′z′ ρ(z′)

− 2π

{
z2

[∫ z2

−∞
dz′ ρ(z ′) −

∫ ∞

z2

dz′ ρ(z′)
]

− z1

[∫ z1

−∞
dz′ ρ(z′) −

∫ ∞

z1

dz′ ρ(z′)
]}

. (C.2)

The location of the points at ±∞ are thus far unspecified. They can both be chosen at
an image of z1 or of z2 within the unit cell without loss of generality since all the relevant
computational procedures require periodicity. In that case, all four integrals within the square
brackets of equation (C.2) vanish because of overall electrical neutrality and of the choice of z1

and z2 at the microscopic unit cell boundaries, with equation (20) following.
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